Созданы роботы для работы в местах атомных аварий

Первые в мире: как роботы справились с радиацией

250 тысяч человек участвовали в ликвидации последствий аварии на ЧАЭС в первые два года. Людей возвращали из зоны при получении дозы в 25 рентген. Острая лучевая болезнь возникает при дозе больше в 4 раза. На крыше четвертого энергоблока такую можно было набрать за несколько минут. Поэтому при ликвидации, чтобы не подвергать человеческую жизнь опасности, где только это было возможно, использовали роботов.

Робототехника в СССР была синонимом космических или военных технологий. Дистанционно управляемые машины, которые могли решать сложные технические и научные задачи, делали под нужды армии или для полетов на Луну. Специальных роботов для техногенных катастроф не было ни в СССР, ни в мире.

Химические войска первыми привезли в зону своих роботов — огромные комплексы на базе танков. Они отлично справлялись с радиоразведкой и разбором завалов, но совершенно не подходили для выполнения мелких работ. А именно в этом была острая необходимость.

При строительстве саркофага крышу хотели залить метровым слоем бетона, но поняли, что радиация все равно пробьется наружу. Крышу необходимо было очистить. Иностранные разработки — немецкие MF-2 и MF-3, японский робот-амфибия для работы на морском дне — в условиях повышенной радиации выполнять задачу не смогли. Робота решили создавать самостоятельно.

Космос как прототип

У научно-исследовательского института «ВНИИтрансмаш» за плечами был опыт двух успешно посаженных на Луну планетоходов. Шасси этих аппаратов взяли за основу для Специализированного транспортного робота — СТР-1. Работал он автономно, команды передавали по радиосигналу. Энергией СТР-1 питался от двух серебряно-цинковых батарей. Из оборудования — камера и большой бульдозерный отвал. Робот весил больше тонны.

MF-2. Фото © AP Photo/Udo Weitz

Уже в августе 1986 года машина попала в Чернобыль. Она передвигалась по крыше и сбрасывала радиоактивные обломки в образовавшийся от взрыва провал. Единственным, но существенным минусом СТР-1 оказалось то, что из-за радиации аккумуляторы очень быстро разряжались, а заряжались дольше, чем было прописано в технической документации. Также подвергался искажению радиосигнал, по которому передавались команды.

Параллельно с «ВНИИтрансмаш» над созданием робота трудились в МВТУ имени Н.Э. Баумана.

«Начальник химвойск генерал-полковник Пикалов приехал к нам с заказом в мае. И уже 18 августа он принял Мобота ЧХ-В. Название — аббревиатура на основе слов «мобильный робот», «Чернобыль», «химические войска»», — рассказывает Александр Батанов, начальник и главный конструктор Специального конструкторско-технологического бюро прикладной робототехники. В 1986–1987 годах он руководил работами по созданию Мобота.

Мобот ЧХ-В весил всего 450 килограммов, а значит мог свободно передвигаться по крыше четвертого энергоблока ЧАЭС, не боясь обрушения. Высокий уровень излучения определил выбор материалов: нержавеющая сталь, алюминий и полиуретан, из которого была сделана гусеница. У Мобота был фронтальный погрузчик, который поднимался и опускался, манипулятор, работавший во всех плоскостях. Электричество в 380 вольт подавалось по кабелю. По нему же передавали команды. «Наш робот с кабелем мог работать сутками», — рассказывает Александр Батанов.

Александр Батанов инженер, технический руководитель работ по созданию Мобота ЧХ-В

На изготовление и испытание двух усовершенствованных Моботов ЧХ-В-2 ушло еще два месяца. Пока машин не было, на крышу для уборки графита запустили «биороботов» — так впоследствии прозвали солдат 18–20 лет. С защитой от радиации, весившей почти 30 кг, люди могли работать не больше трех минут в день, а на некоторых участках и вовсе 45 секунд. За месяц на крыше четвертого энергоблока побывали около пяти тысяч солдат.

30 ноября 1986 года официально объявили, что строительство саркофага «Укрытие» завершено. В действительности на крыше оставался радиоактивный мусор, его надо было убрать.

Робот или 20 тысяч человек

«К 5 декабря мы сделали новую конструкцию. Намного мощнее и весом уже в 500 кг, так как опытным путем выяснили, что крыша может выдержать такую массу. Установили отбойный молоток, чтобы разбивать впаявшиеся в крышу стержни. Придумали специальную платформу для безопасной транспортировки робота», — говорит Александр Батанов.

В январе Моботы — теперь их на всякий случай было два — отправились в зону завершать работы. «Мы провели радиационную разведку и выяснили, что на крыше под обвалившейся трубой остался мусор с излучением в 10 тысяч рентген. Вместе с патоновцами (Институт электросварки АН УССР, сейчас Институт электросварки им. Е.О. Патона — прим.ред.) мы сделали специальную „скрепку“ и с помощью шнуровых зарядов разрезали эту трубу. Убрали весь мусор».

К апрелю Моботы Ч-ХВ-2 расчистили крышу реактора, полностью подготовив 11 000 квадратных метров к заключению под бетонный саркофаг. Если бы вместо машин эту работу делали люди, через крышу пришлось бы пропустить 20 тысяч человек.

Александр Батанов продолжил совершенствовать робота. Его современные модификации находятся на вооружении российской армии и в арсенале атомных станций.

ЧАЭС: Робот и робототехника на ликвидации аварии

Чернобыль и Роботы

Пожалуй, единственным положительным последствием радиационной катастрофы на ЧАЭС 1986 года является то, что авария послужила мощным импульсом развития гражданской робототехники в СССР. На момент аварии оказалось, что в стране первой запустившей человека в космос, обладающей мощнейшей научной базой по разработке автоматических аппаратов для покорения Луны и Марса, отсутствовали роботы и роботизированные средства способные помочь человеку в чрезвычайных ситуациях на земле. Роботы – способные войти в горящее здание или обследовать участки с высоким радиационным фоном не разрабатывались и не производились. Чернобыльская авария открыла глаза и на эту проблему. Оказалось, что часть работы по очистке (дезактивации) зданий Чернобыльской АЭС просто невозможно выполнить без автоматических, дистанционно-управляемых систем – уровни радиационного загрязнения исключали присутствие человека. Также роботы требовались и после эпохального строительства укрытия над разрушенным реактором.

Робот магнитоход на ЧАЭС

Радиационно-опасный Саркофаг требовал изучения состояния внутренних конструкций. Выполнить эту работу было чрезвычайно сложно. Уровни радиационного фона во внутренних помещениях Саркофага составляли десятки и сотни Рентген, что требовало применения специальных роботов для разведки. Впоследствии эти системы так и стали называться – робот-разведчик.

Проектированием и испытанием роботов для Чернобыля занималось большое количество ученых, институтов и конструкторских бюро. Над созданием роботизированных комплексов объединялись коллективы многих институтов. В реальных условиях Саркофага испытывались как отечественные, так и зарубежные роботы (изготовленные в Германии, Японии, США). За послеаварийный период у многих был накоплен значительный опыт разработки роботов для применения при возникновении ЧП радиационного характера. Сегодня значительная часть разработок забыто, часть роботостроительных коллективов прекратили свое существование, а их богатый опыт утерян. Но часть институтов, особенно в России и сегодня занимаются созданием многоцелевых роботов для работы в чрезвычайной обстановке.

Читать еще:  Рейтинг зеркальных фотоаппаратов 2018 года: лучшие модели от бюджетных до самых дорогих

Как правило, такие роботы берутся на вооружение МЧС России (но об этом поговорим в отдельной статье). К сожалению, за прошедшее время после аварии не проводилась систематизация и обобщение всех типов роботов разработанных за 20-ти летний период существования Саркофага, отсутствует исторический анализ выполняемых ими работ в Саркофаге. А ведь сделано было немало и задумывалось еще больше — даже были проекты (планы) создания целых робототехнических комплексов, которые состояли из нескольких десятков разных типов роботов! Эти роботы должны были в автоматическом режиме выполнить разбор Саркофага, вынуть из реактора и других помещений высокоактивные материалы и упаковать их в специальные контейнеры. Но, к сожалению, в середине 90-х прошлого века, тема «забуксовала». Хотя опытные образцы роботов для чернобыльского Саркофага все еще разрабатываются в одном из институтов.

Но вернемся к началу. Для потребностей ликвидации аварии создавались разные роботы – в зависимости от вида поставленной задачи (радиационная разведка, теле- и фотосъемка, отбор образцов радиоактивных материалов и много другое) условий работы (открытое пространство, коридоры и коммуникации в объекте «Укрытие») и т.д. Перечень основных институтов занимавшихся разработкой роботов и робототехнических комплексов для Чернобыльской АЭС в 1986 году:

  • ВНИИ «Трансмаш»;
  • ВНИИАЭС;
  • НПО «Энергия»;
  • МГТУ имени Н.Э. Баумана;
  • Государственный институт физико-технических проблем;
  • ЦНИИ робототехники и технической кибернетики;
  • ИФТП;
  • “Пролетарский завод”;
  • НПО “Источник”;
  • НПО “Электронмаш”;
  • ГОИ;
  • НИИ телевидения;
  • Киевский институт автоматики

Роботы проектировались, как на этапе острой фазы аварии (первые месяцы после аварии), так и в «мирное» время. В связи с этим, в развитии чернобыльского роботостроение можно выделить несколько этапов – этап использования роботов в острый период ликвидации аварии, этап развития робототехники для разведки и изучения Саркофага и этап проектирования роботов для превращения Саркофага в экологически безопасную систему (по сути эти системы должны были разобрать и захоронить Саркофаг и радиоактивные материлы). Хотя этапы выделены условно, но они отображают общую тенденцию к изменению требований к роботам разрабатываемых и применявшихся для Чернобыля.
Специалисты отмечают, что накопленный опыт использования роботов на ликвидации аварии на ЧАЭС способствовал появлению нового направления в робототехнике, которое получило название «экстремальная робототехника». Сегодня «экстремальная робототехника» охватывает ряд важных областей человеческой деятельности – роботы применяются для ликвидации чрезвычайных ситуаций природного и техногенного характера. Роботы изучают труднопроходимые и опасные участки, используются для проведения спасательных работ, выполняют сложные технологические операции, а также используются для работы под водой.

Автор чернобыльский роботов и фото — ИПБ АЭС НАНУ (г.Чернобыль)

Чернобыльская робототехника 1986 года

Основные задачи для роботов в 1986 году заключались в проведении радиационной разведки, разборе завалов разрушенного реактора и захоронении радиоактивных материалов. Такие работы выполнялись, как на кровле ЧАЭС, так и на прилегающих к разрушенному блоку территориях, где в основном роботы привлекались для дезактивации и захоронения радиоактивных материалов.
Чернобыльский робот должен был способен работать в условиях высоких уровней радиационных полей, должен был обладать способностью передвигаться по сложным поверхностям (с наличием завалов и препятствий), а также должен был поддаваться осмотру, ремонту и дезактивацией оборудования и систем робота. По данным Юревича Е.И, на ликвидации аварии было задействовано около 15 типов модульных роботов, которые имели разное назначение. Легкие роботы — роботы-разведчики использовались для изучения радиационной обстановки в помещениях Саркофага, тяжелые роботы — технологические роботы предназначавшиеся для уборки (дезактивации) территории. На видео представлена работа робота на кровле ЧАЭС в 1986 году.

Документальное видео — робот на кровле ЧАЭС в 1986 году

Далеко не все роботы, которые пытались привлечь к ликвидации аварии были способны выполнить поставленные задачи и провести необходимые работы. Большинство роботов оказалось непригодными для работы в условиях ЧАЭС. Например, радиоуправляемый бульдозер амфибия «KOMATSU», который был способен работать даже на морском дне – не выдержал радиационных нагрузок и быстро вышел из строя. По существующей информации марка бульдозера «Komatsu D-355W». Непригодным для работы в таких жестких радиационных условиях оказались и два немецких робота MF-2 MF-3.

Фото – Робот СТР-1 выполнявший работы на кровле ЧАЭС

Наиболее известные марки роботов применявшиеся на ЧАЭС в 1986 году:

  • Клин-1
  • Специализированный транспортный робот (СТР-1) — Клин-2
  • Мобот-Ч-ХВ и Мобот-Ч-ХВ-2
  • MF-2 и MF-3 — тяжелые радиоуправляемые роботы (производство Германии – роботы сразу вышли из строя под действием ионизирующего излучения)
  • БАЭР («Белоярец»)
  • МВТУ-2
  • ТР-Б1
  • РТК «Авангард»
  • РР-Г1 (робот разведчик)

По некоторым данным, на ликвидации аварии был применен совмещенный тип использования разных типов роботов. Легкий робот-разведчик обслуживал работу выполняемую тяжелыми (технологическими) роботами. Обеспечивал динамическую визуализацию рабочей площадки для оператора тяжелого робота, а также давал возможность контроля за выполнением работ. Но в большинстве легкие роботы использовались по своему прямому назначению – разведка и проведение видео, фото и гамма- съемки в помещениях 4-го блока Чернобыльской АЭС.

Проблемы робототехники и роботов

Накопленные знания по использованию роботов для ликвидации аварии на ЧАЭС позволили понять и выявить проблемы стоящие перед экстремальной робототехникой. В частности конструкторы роботов пришли к выводу, что для роботов, которые применяются в экстремальных ситуациях необходимо улучшать качество силовых систем. По сути, это главная проблема современной робототехники, требующей разработки новых физических подходов к решению задач управляемого движения (новые способы передвижения роботов) и новых подходов в обеспечении робота электроэнергией.
Важной проблемой использования роботов на ЧАЭС являлось дистанционное управление. Эта проблема требует развитие способов надежного дистанционного и телеуправления.
Также необходимо усовершенствование интеллектуальных возможностей систем автономного управления роботом, что напрямую связано с разработками по созданию искусственного интеллекта.

О ком забыли в сериале «Чернобыль»: советские роботы на аварии АЭС

Сериал «Чернобыль», созданный американским каналом HBO, невероятно популярен у зрителей из России, Украины и США. Но его создатели умолчали о десятках роботов, работавших на завалах.

Главный герой — академик Валерий Алексеевич Легасов, советский химик, вошедший в правительственную комиссию по расследованию причин и по ликвидации последствий аварии. Расшифровки его аудиозаписей легли в основу сценария «Чернобыля». Некоторые очевидцы подтверждают достоверность обстановки в фильме, несмотря на художественный вымысел. Ученые думают, ликвидаторы делают, паранойя правительства мешает спасать континент. Другие критикуют режиссерскую трактовку. Один из существенных поводов — в сериале не показана роль советских роботов в ликвидации.

Чего не знал академик

В фильме вскользь упоминаются советский аппарат СТР (фото на заставке) и робот из ФРГ, которые сразу выходят из строя. И Легасов заявляет: машины не справятся, работать могут только «биороботы» — то есть люди.

Однако именно Чернобыль дал мощнейший толчок развитию отечественной экстремальной робототехники, рассказал внештатному автору Forbes основатель советской робототехники Евгений Иванович Юревич. На момент аварии 26 апреля 1986 года Юревич — директор и главный конструктор Центрального научно-исследовательского института робототехники и технической кибернетики (ЦНИИ РТК). Он почти сразу вылетел на место аварии, чтобы изучить обстановку, и утверждает, что в фильме нарушена хронология: в картине сначала появляется отечественный луноход, затем упоминается немецкий робот.

По воспоминаниям ученого, в реальности сперва были закуплены два немецких робота-манипулятора MF-2 и MF-3. Оба не выдержали излучения. По сценарию, СССР скрыл от ФРГ реальный уровень излучения и запросил машины, выдерживающие 2000 рентген/час, тогда как по факту излучение было в десятки раз выше. Но Сергей Половко, на тот момент начальник отдела систем управления ЦНИИ РТК и один из ликвидаторов, называет это фантазией режиссера: MF-2 и MF-3 не были рассчитаны даже на 200 Р/ч, потому что создавались не для работы на АЭС.

Читать еще:  Прессостат стиральной машины: что такое, как проверить, замена

Уже через несколько дней к работе был привлечен ЦНИИ РТК, главный в СССР центр робототехники. Он получил задание: до 15 июня 1986 года разработать и поставить на ЧАЭС подходящие машины. Из-за спешки распоряжение председателя правительственной комиссии Льва Воронина, датированное 29 мая 1986 года, было написано от руки.

Находившийся на месте аварии Юревич передавал с ЧАЭС информацию для разработки роботов, а ЦНИИ РТК работал «в режиме военного времени» — круглосуточно. На тот момент штат организации составлял более 1000 человек. «Мы работали вместе с военными, поднимались на крышу реактора, спускались в шахты. У каждого был личный дозиметр. Если он показывал максимальную допустимую дозу, нас отправляли домой», — рассказывает Евгений Юревич.

Первые советские роботы для Чернобыля

Институт смог создать и запустить первые модели по разведке и очистке территории ЧАЭС уже в июне 1986 года. Сначала ЦНИИ РТК создал для Чернобыля колесного робота-разведчика РР-1, который помог оценить уровень радиации и количество отходов там, куда людям был закрыт доступ. Его данные позволили скорректировать стратегию: предполагалось, что роботы-подборщики манипуляторами будут собирать отдельные радиоактивные объекты и грузить их в транспортного робота. Но выяснилось, что нужно очищать большие сильно загрязненные площади, в основном на крышах зданий. Разумнее было сбрасывать мусор в провал на месте взрыва. Для этого манипуляторы неэффективны, нужны были тяжелые роботы-бульдозеры.

Такие роботы имели примитивную, но максимально надежную конструкцию и мощную защиту от радиации. Частью из них дистанционно управляли по кабелю, остальные были радиоуправляемыми. В июне 1986 года первый робот-бульдозер ТР-А1 прибыл на место аварии. Выглядел он совсем не как высокотехнологичный андроид из фантастических фильмов, зато справлялся со своими задачами.

Постепенно к нему присоединились роботы-бульдозеры ТР-А2, ТР-Б1, ТР-Б2, ТР-Г1 и ТР-Г2. Параллельно разрабатывались новые роботы-разведчики: колесные РР-2, РР-3 и гусеничные РР-Г1 и РР-Г2.

Катастрофа такого масштаба произошла впервые, поэтому оптимальная конструкция была неизвестна, ученые экспериментировали, оптимизируя модели под конкретные задачи. Аккумуляторы быстро садились и радиосвязь плохо работала из-за ионизации, которую создает радиоактивное излучение. Роботы с управлением и подачей энергии по кабелю были лишены этих недостатков, но длинный кабель мог запутаться, а короткий вынуждал находиться оператора в зоне с высоким радиоактивным фоном. А в модели ТР-Г1 чувствительная к радиации полупроводниковая электроника большей частью была заменена электромеханическими аналогами или вынесена на пульт управления оператора.

«Среди конструкторских бюро возникла конкуренция: все вдруг осознали, что тот, кто успешно справится с задачей ликвидации, получит средства на развитие этого направления и мощную государственную поддержку. Поэтому и другие организации захотели участвовать», — вспоминает Юревич.

В результате помимо немецких машин и моделей ЦНИИ РТК в Чернобыль были отправлены роботы «Белоярец» ПО «Атомэнергоремонт», два «Мобот Ч-ХВ» из МВТУ, два аппарата СТР ВНИИтрансмаш и другие. По воспоминаниям Юревича, из них не вышли из строя роботы СТР, те самые луноходы из сериала HBO, хотя и у них иногда случались поломки, и «Моботы».

Вымысел и реальность

При сравнении сериала и реальных событий ученые подметили еще несколько деталей. В первую очередь коллеги по ЦНИИ РТК критически отнеслись к тому, что государство в картине — исключительно отрицательный «герой».

«Подобная кооперация, которая спасла ситуацию в 1986 году, возможна только в тоталитарном государстве. В случае с Чернобылем не было никаких тендеров, конкурсов. Мы просто писали телеграмму на нужное нам предприятие — например, в Армению, — и через два дня нам присылали оттуда необходимую деталь или модуль. Сегодня это невозможно», — считает Юревич.

«Режет ухо постоянное обращение ликвидаторов друг к другу «товарищ». Мы никогда так не общались», — критикует сериал Половко. Неправдоподобной, по его мнению, выглядит сцена в автобусе по пути на ЧАЭС: мрачно, люди молчат, депрессивная музыка. «Всю дорогу до станции обсуждались всякие мелочи, от рабочих моментов до вчерашнего обеда», — вспоминает ученый. Еще одна неточность — палаточный лагерь, в котором не было необходимости: «У нас был целый город, покинутый жителями».

В сериале толку от роботов нет, а Юревич отмечает, что роботы ЦНИИ РТК заменили несколько тысяч военных. Причем на участках, куда посылать людей было смертельно опасно. В течение двух месяцев ЦНИИ РТК разработал, изготовил и отправил на станцию 15 роботов различного назначения. Для создания чернобыльских роботов-ликвидаторов к проекту были подключены более 40 производственных предприятий.

Роботы в воспоминаниях Легасова

Мотивы авторов сериала «Чернобыль», почти исключивших роботов из фильма, неизвестны. Но можно предположить, что они ориентировались на воспоминания самого В. А. Легасова, в которых ЦНИИ РТК не фигурирует. Роботов Валерий Легасов упоминает мельком и именно в том же ключе, что и создатели сериала: существовавшие роботы с работой справиться не смогли. Но далее отмечает, что «в конечном счете, наиболее удачным способом оказались бульдозеры дистанционно управляемые, или просто бульдозеры-скреперы». По всей видимости, созданные в ЦНИИ РТК аппараты с удаленным управлением ученый-химик роботами просто не считал.

Более того, Легасов в воспоминаниях упоминает роботов-разведчиков, созданных в его собственном Институте атомной энергии им. Курчатова в середине 1987 года. Но это произошло уже после того, как роботы ЦНИИ РТК и ВНИИтрансмаш выполнили все основные задачи по очистке и разведке, которые на них были возложены.

Благодарим за помощь в подготовке материала сотрудников ЦНИИ РТК, в частности Е. И. Юревича и С. А. Половко. При подготовке использовалась монография Е. И. Юревича «Роботы ЦНИИ РТК на Чернобыльской АЭС и развитие экстремальной робототехники».

Созданы роботы для работы в местах атомных аварий

Роботы-ликвидаторы: уникальная техника для Чернобыльской АЭС

Все началось с игрушки

Острая необходимость в использовании дистанционных средств разведки и диагностики при ликвидации последствий аварии на Чернобыльской АЭС появилась практически сразу после начала работ на разрушенном блоке. Главной целью стало получить необходимую информацию, не рискуя человеческими жизнями. Однако все существовавшие на тот момент российские и зарубежные роботы – их было около десяти – оказались непригодны для работы в условиях объекта «Укрытие».


Испытание робота на полигоне в г.Чернобыль.

Агрегаты застревали в развалинах, из-за высокого уровня радиации они «сходили с ума», поскольку радиационные поля создавали помехи в электронных схемах, а кроме того, из-за подъема радиоактивной пыли при движении их было невозможно дезактивировать без риска для персонала.

Поэтому исследователям поначалу пришлось на месте из подручных материалов создавать роботов своими руками. Одним из самых известных примеров самодельных роботов стал пластмассовый игрушечный танк с кабельным пультом управления. Кабель заменили на более длинный, установили на игрушку дозиметр, измеритель температуры и закрепили мощный фонарь. По словам создателей, он стал чем-то вроде «охотничьей собаки», которая могла бежать на «поводке» перед исследователями, предупреждая их об опасности. Что немаловажно, он довольно легко отмывался от радиоактивности и смог прослужить до весны 1987 года, после чего был захоронен на блоке. А принцип вынесения электронной начинки в безопасную зону при помощи кабеля в будущем лег в основу специализированных агрегатов.

Читать еще:  Какой выбрать проточный электрический водонагреватель


Наладка одного из роботов в лаборатории (г.Чернобыль).

Пылеподавление, разведка, монтаж

Разработка специальных робототехнических устройств началась только к концу 1989 года, когда была получена основная часть информации о состоянии конструкций внутри «Укрытия», местоположении и физико-химических свойствах топливосодержащих материалов (ТСМ). Задачу поручили Лаборатории физико-химических проблем ядерной энергетики Курчатовского института, а в составе Комплексной экспедиции была создана специальная лаборатория. Их сотрудники приступили к конструированию дистанционно управляемых самоходных агрегатов (ДУСА) для проведения разведки и дезактивации помещений «Укрытия». После создания в 1992 году Межотраслевого научно-технического центра «Укрытие» лабораторию преобразовали в Отдел дистанционных комплексов и технологий при нем.

Транспортные пути,рельсы(1), проложенные для передвижения ДУСА в центральном зале
и выходящие из выбитого окна пультовой (2).

Основные ДУСА можно поделить на три типа: агрегаты для пылеподавления, роботы для подготовительных и монтажных работ, а также разведчики. В основу большинства агрегатов были положены самоходные платформы, способные преодолевать препятствия высотой до 150 мм, выдерживать углы подъема ≤30% и двигаться по сыпучим и вязким покрытиям. Весили они от 30 до 50 кг, могли нести от 50 до 100 кг и передвигались со скоростью от 0,6 до 2,5 м/мин. Узлы пультов управления и бортовая автоматика были унифицированы благодаря специально разработанной единой системе передачи кодированных команд на борт установки.

Большой вклад маленьких ДУСА


ДУСА для очистки воздуха в помещениях «Укрытия» от пыли.

Первыми на объекте «Укрытие» применили роботов ТР-1, которые осаждали радиоактивные аэрозоли при помощи специальных растворов и наносили пылеподавляющие покрытия на стены, потолок и оборудование. Для этого на подвижную платформу установили специально сконструированную распыляющую установку. Несмотря на относительную простоту конструкции, применение ТР-1 позволило уменьшить коллективную дозу персонала примерно на10 тысяч мЗв.


ДУСА для отбора проб ТСМ и бетона — ТР-2 во время работы в пом.308/2.

При разработке плана по преобразованию «Укрытия» в экологически безопасную систему, одним из важнейших был вопрос о количестве и классификации радиоактивных отходов. В частности, надо было установить глубину проникновения топливной пыли в бетонные конструкции. Для этого был использован ДУСА ТР-2, который представлял собой смонтированную на шасси буровую установку. Агрегат позволял отбирать пробы в виде кернов диаметром от 8 до 60 мм с глубины до 200 мм. Движение и бурение специалисты за пультом отслеживали через черно-белую телекамеру.


ТР-4 передвигается в транспортном положении,
поднята только телекамера (она также может быть сложена).

К концу 1990 года была создана еще одна буровая установка с глубиной отбора проб до 600 мм – ТР-4. Бурение производилось без использования промывочных жидкостей, что исключало вымывание фрагментов и образцов. Буровая головка установки могла придавать буровому инструменту как вращательное, так и ударное перемещение. На пульт управления помимо видеоизображения с робота поступали сигналы о срабатывании устройства подачи буровой головки и ее температуре. Чтобы робот мог добраться до нужного места через щели и провалы, буровое и телевизионное оборудование находилось в сложенном состоянии и разворачивалось в рабочей зоне. При помощи ТР-4 впервые были отобраны «горячие» керны из вертикальных скважин.

К маю 1994 года специалисты разработали многофункционального робота с универсальной рабочей платформой и сменными навесными приспособлениями: клещевым захватом, абразивным кругом, грузоподъемными вилами, ковшом для сбора материалов и рядом других инструментов. Клещевой захват позволял ТР-7 поднимать и удерживать груз весом до 50 кг и диаметром до 150 мм. При помощи резака с абразивным кругом робот отделял фрагменты металлоконструкций. Уголковыми вилами он переносил грузы, а ковш использовался для сбора сыпучих материалов.

Для телевизионной разведки по заданному маршруту с одновременным измерением мощности экспозиционной дозы (МЭД) был сконструирован ТР-10. На нем смонтировали черно-белую и цветную телекамеры, прожектор, и направленный в пол дозиметр, позволявший в реальном времени контролировать МЭД. Телевизионный блок мог поворачиваться в горизонтальной плоскости на угол ± 90 0 , а в вертикальной плоскости на угол ± 30 0 .

Там, где тележка не промчится

Тележки могли проникнуть далеко не всюду, например, в превратившиеся в развалины центральный зал и подаппаратное помещение 305/2. Но именно эти места представляли наибольший интерес с точки зрения обнаружения ядерного топлива, оставшегося в «Укрытии».


«Тележка» разворачивается на месте.

Тогда сотрудники Комплексной экспедиции предложили проложить специальные рельсы, и уже по ним пустить роботов с телекамерами и прожекторами. В 1990 году такие устройства были изготовлены. Из-за целого ряда трудностей в полной мере их использовать не удалось, но они позволили получить важную информацию о состоянии конструкций и скоплениях ТСМ в подаппаратном помещении. В дальнейшем при проведении разведки обследованных этими роботами помещений специалисты всегда опиралось на данные, полученные с их помощью.

Для обследования обшитых металлом помещений в 1990 году был создан магнитоход, который благодаря мощным самарий-кобальтовым магнитам мог нести значительный вес. Сдвоенные колесные блоки увеличивали надежность зацепления при преодолении сварных швов и фрагментов немагнитных покрытий. Также он мог буксировать прицеп с детекторами и отцеплять его в заданном месте.


Магнитоход в лаборатории.

С помощью магнитохода на «Укрытии» устанавливались тепловые датчики в помещениях парораспределительного коридора. Кроме того, он помог измерить величину МЭД на северной контрфорсной стене, где были установлены восемь электронных дозиметров типа PD-3i.

Заокеанский гость

Поскольку Чернобыльская катастрофа стала событием мирового масштаба, агрегаты для «Укрытия» разрабатывали не только российские и украинские специалисты. Департамент энергетики США и НАСА специально для работ на ЧАЭС создали многофункционального робота Pioneer. Он состоял из самоходной тележки, системы управления и распределения энергии, системы дистанционного наблюдения с трехмерным картографированием, системы контроля состояния окружающей среды, манипулятора и бурового устройства для отбора образцов бетона.

Четырехсотметровый кабель с пятью герметически закрытыми блоками позволял управлять Pioneer с безопасного расстояния. Робот умеет оценивать целостность конструкций «Укрытия», резать и доставлять образцы пола и стен.

Главный его недостаток – высокая стоимость, которая оценивается в 3 миллиона долларов. Комплекс Pioneer передали Украине еще в 1998 году, но до сих пор он на «Укрытии» так и не применялся и находится в учебном центре Славутича.

Как это ни парадоксально, но колоссальный опыт Чернобыля не был учтен при ликвидации последствий аварии на «Фуккусиме-1» в 2011 году. Точно также как и советские ученые, японцы столкнулись с тем, что роботы оказались не способны вести разведку в условиях высоких радиационных полей. Дорогостоящие аппараты моментально выходили из строя. Привлеченные к работам французские и американские агрегаты также потерпели неудачу, вынудив отправлять в загрязненные радиацией помещения людей. А ведь весь этот тяжелый путь был уже пройден, колоссальный опыт накоплен и основные решения выработаны. Роботы на Чернобыльской АЭС не просто проделали титаническую работу, как и создавшие их люди, но и помогли сохранить человеческие жизни.


Робот, созданный
специалистами региональных университетов Чиба и Тохоку (Япония) специально для работ внутри разрушенных реакторов АЭС «Фукусима -1».

Ссылка на основную публикацию
Adblock
detector