Создан робот, способный плавать и подниматься над поверхностью воды

ТЕХНОЛОГИИ, ИНЖИНИРИНГ, ИННОВАЦИИ

Измеритель диаметра, измеритель эксцентриситета, автоматизация, ГИС, моделирование, разработка программного обеспечения и электроники, БИМ

Главное меню

Навигация по записям

Создано роботизированное летательное устройство, способное плавать и летать подобно альбатросу

Инженеры MIT разработали роботизированное летательное устройство, которое может парить над поверхностью воды по тому же принципу, который используется альбатросами. Кроме того, он может и плыть по волнам, не утопая. Это стало возможно благодаря удивительной предусмотрительности разработчиков, где альбатросом аппарат становится в том случае, если в исследуемом регионе сильный ветер. Лодкой — если ветра нет. В результате такая система покрывает расстояние до цели за время, в 10 раз меньшее, чем среднее судно. Устройство очень легкое и весит всего 2,7 кг. Разработчики считают, что в ближайшем будущем такие аппараты будут незаменимы в работе ученых, помогая вести наблюдение за происходящим на огромных территориях.

«Большая часть океана пока остается вне инструментов мониторинга человека», — говорит Габриэль Буске, глава проекта. Он утверждает, что чрезвычайно важно вести наблюдение за океаном, отслеживая влияние климатических изменений. Но сделать это при помощи стандартного набора инструментов не так легко, поэтому и было принято решение разработать специализированную ситсему.

Робот использует альтернативные источники энергии вместе с традиционными. Впервые детали проекта были представлены на международной конференции IEEE в Австралии.

В прошлом году Буске со своими коллегами опубликовал исследование динамики полета альбатроса. Они определили основные принципы такого полета и выделили отдельные составляющие, которые позволяют немаленькой птице покрывать огромные расстояния с минимальным расходом энергии. Альбатрос способен на это благодаря умению использовать энергию ветра.

В процессе полета альбатрос переходит из быстрых «течений» воздушных масс в более медленные и обратно, что позволяет ему практически без затрат энергии продолжать двигаться. В случае робота, если ветер не очень сильный, он способен скользит и по поверхности воды. Чем чаще устройство (или птица) взаимодействует с разноскоростными потоками, тем быстрее скорость объекта.

Итогом разработки стало гибридное устройство, которое представляет собой автономный аппарат с размахом крыльев в 3 метра — примерно такой же показатель и у альбатроса. К конструкции было добавлено несколько элементов, которых нет у прототипа системы — например, парус. Затем ученые провели математическое моделирование процесса перемещения аппарата, и оказалось, что его показатели близки к оптимальным.

Средняя скорость системы составляет около 40 километров в час — это гораздо быстрее, чем у парусной лодки. Система оказалась весьма эффективной. Уже построен прототип, который помог сделать Марк Дрела, профессиор аэронавтики и астронавтики в MIT. В нижней части системы закреплен киль и несколько инструментов, включаяч GPS, разного рода сенсоры, системы для полета, ультразвуковой сенсор, позволяющий определять расстояние до воды.

При помощи этого сенсора ученые очень точно определяют местоположение устройства относительно поверхности моря или океана. При необходимости киль можно погрузить в воду, но дрон все равно будет двигаться вперед с достаточно большой скоростью. Как и говорилось выше, частью конструкции должен был стать парус, но затем от него решили отказаться в ходе испытаний прототипа, чтобы не усложнять задачу.

В самом начале испытаний робота испытали на реке, причем его запускали при помощи удочки. Все получилось, и достаточно быстро робот набрал скорость в 35 километров в час, оторвавшись от поврехности воды и отправившись в первый свой полет.

Удаленно можно спускать аппарат, управлять его килем, с тем, чтобы изменить направление движения. В ходе испытаний оказалось, что робот ведет себя так, как и задумано. «Мы летали очень близко к поверхности и любая ошибка могла привести к аварии. Мы все из-за этого сильно нервничали, но в то же время и наслаждались моментом», — говорит глава группы разработчиков.

Читать еще:  Что такое аэратор для газона, для чего он нужен, разновидности: варикуттер, скарификатор

На этапе proof-of-concept все прошло хорошо, так что аппарат решено было продолжать совершенствовать. Вскоре к общей конструкции должны добавить обещанный ранее парус, что позволит системе передвигаться еще быстрее. Таких «альбатросов» планируется запустить несколько, чтобы иметь возможность вести мониторинг обширных площадей морей и океанов.

Автор: Максим Агаджанов
Источник: https://geektimes.com/

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!

10 невероятных изобретений, которые были вдохновлены растениями и животными

Получайте на почту один раз в сутки одну самую читаемую статью. Присоединяйтесь к нам в Facebook и ВКонтакте.

1. Приспособление для сбора воды

Дождь — очень редкое явление в африканской пустыне Намиб, однако каждое утро на песчаные дюны опускается туман. Это идеальные условия для намибийского пустынного жука. Когда капли воды из тумана собираются на панцире жука, они стекают по водоотталкивающим гребням в сторону его головы. По мере накопления влаги, капли становятся больше и скользят в сторону рта жука, позволяя ему утолить свою жажду. Инженеры из Массачусетского технологического института позаимствовали это природное изобретение, чтобы создать материал, который может собирать воду из воздуха. Он состоит из стекла и пластика и изобилует крошечными гребнями, т. е. очень похож на губку. При этом материал является очень дешевым и может быть создан посредством печати гидрофильных точек на листах гидрофобных материалов.

2. Живые микророботы

Работа врачей была бы, безусловно, намного проще, если бы врачи могли проникнуть внутрь тела пациента и определить точную причину его боли или болезни. Технология обработки изображений часто дает слишком зернистый снимок с низким разрешением, а машины МРТ являются громоздкими и дорогими. Благодаря изобретению роботов, которые достаточно маленькие, чтобы плавать в крови, медицина может стать намного проще. Cyberplasm — это робот, который в некотором смысле является «живым». Робот оснащен датчиками-сенсорами, сделанными из живых клеток млекопитающих и питающимися глюкозой.

Он реагирует на химические вещества и свет таким же образом, как и живой организм. Также миниатюрный робот имеет нервную систему, которая преобразовывает внешние раздражители в электрические сигналы, подобно тому, как это делает живой мозг. Cyberplasm был смоделирован по образу миноги — паразитической рыбы с длинным трубкообразным телом. Со временем, робот-минога сможет «путешествовать» внутри человеческого тела в поиске опухолей, тромбов или химических веществ.

3. Роботизированная рука

Хобот слона состоит из более чем 40 000 мышц и он такой же проворный, как человеческая рука. Его универсальный дизайн вдохновил на создание роботизированной руки. Немецкая компания Festo разработала Bionic Handling Assistant — конечность, которая объединяет в себе человеческие возможности и достижения технологий. Робот, который имеет четыре металлических когтя, обучается всему так же, как человеческий ребенок, — методом проб и ошибок. Постоянно пытаясь захватить различные объекты, он постепенно «понимает», какими мышцами «хобота» из полиамида ему нужно двигать.

4. Сверхскоростные поезда

Когда чрезвычайно быстрые японские поезда выезжают на огромной скорости из туннеля, они создают оглушительный хлопок из-за формы носа поезда. Ведь на такой скорости поезд в туннеле создает перед собой стену из сжатого воздуха, которая замедляет поезд и увеличивает расход топлива. Выход из этой проблемы подсказали птицы. Зимородок может похвастаться обтекаемым клювом , который облегчает ловлю им рыбы. Благодаря заостренной формы своего клюва, птица способна погружаться в воду без всплеска. Инженер и орнитолог Эйдзи Накацу создал нос подобной формы у поезда, который позволяет ему уменьшить сопротивление воздуха. Кроме того, он также воспользовался дизайном перьев совы, чтобы уменьшить шум от движущегося поезда.

Читать еще:  Электрические конвекторы для отопления дачи

5. Мягкотелый робот

Кто сказал, что роботы должны быть твердыми и сделанными из металла. Команда исследователей из Италии обнаружили преимущества мягкого тела осьминога для робототехники: подобный робот способен плавать, держать предметы и ползать, а также «механический осьминог» использует намного меньше вычислительных мощностей для функционирования. Вместо того чтобы двигаться математически предсказуемым образом, как твердые машины, робот-осьминог способен сжиматься, перемещаться волнистыми движениями и скручиваться. У него нет жестких конечностей и неподвижных соединений, что является преимуществом, поскольку подобный робот способен приспосабливаться к окружающей среде.

6. Киборг-цветок

Мало кто знает то, что розы могут проводить электричество. Магнус Берггрен и его команда исследователей из Швеции сумели добиться подобного, встроив в растения микроскопические провода. Этот метод предоставил ученым возможность контролировать физиологию роз, например, не позволяя цветам зацветать перед заморозками или помогая им не засохнуть. Эти модификации не влияют на плоды или семена растений. Хотя постоянные изменения могут негативно повлиять на экосистему, это изобретение можно легко применять и отказываться от него.

7. Противомикробные катетеры

Благодаря ее гладкости и долговечности, акулью кожу можно применять для практически всех видов вещей: от купальников до обуви. Однако мало кто ожидал, что из нее можно делать катетеры. Микробы — вечная головная боль для любой больницы. Инженер Тони Бреннан обнаружил, что нет ничего не чище акульей кожи, поверхность которой усеяна крошечными зубчиками, которые предотвращают прилипание слизи, водорослей и моллюсков. А также акулья кожа останавливает болезнетворные бактерии, такие как кишечная палочка.

8. Вакцина, ДНК и стволовые клетки

Используя экстремальную гибернацию, некоторые пустынные мхи способны к воскрешению через десятилетия после того, как выхохли и «умерли» под воздействием высоких температур. Но как только начинают идти дожди, растения вновь становятся пышными и зелеными. Тихоходки, микроскопические беспозвоночные, также являются одними из самых сложных животных на Земле. Их забрасывали в в космическое пространство, подвергали воздействию экстремальных температур (абсолютного нуля и 150 градусов по Цельсию), облучали радиацией и держали годы без воды. В ответ на это, тихоходки «засыхали» и скукоживались, но вновь оживали, когда окружающие условия снова становились благоприятными. Изучая эти организмы, ученые смогли сохранять вакцины, ДНК и стволовые клетки в течение гораздо более длительного времени.

9. Робот, прыгающий по воде

Водомерки могут ходить по воде, благодаря эффекту поверхностного натяжения. Подсмотрев этот принцип у данных насекомых, ученые построили сверхлегкий робот, который может прыгать по воде. Этот робот мягкотелый и весит всего 68 миллиграммов. Хотя инженеры уже разрабатывали роботов, которые способны ходить по воде, данное изобретение является уникальным, поскольку робот может прыгать по поверхности воды, не погружаясь в нее. Он имитирует движения ног блохи и может прыгать на целых 14 сантиметров. Предполагают, что миниатюрный бот может оказаться полезным при наблюдательных и аварийно-спасательных работах.

10. Рентгеновское зрение

С рентгеновскими лучами трудно работать, поэтому рентгеновские аппараты в аэропортах являются настолько громоздкими. Тем не менее, ученые в настоящее время сумели скопировать принцип, который используется в глазах омаров. Вместо того, чтобы преломлять свет подобно линзе, омары воспринимают его с помощью эффекта отражения. Их глаза покрыты квадратами, похожими на плоские зеркала, которые отражают свет под точными углами для формирования изображений с любого ракурса. Эта конструкция оказалась полезной для астрономов, которым были нужны телескопы, способные сосредоточить рентгеновские лучи из определенных областей в космосе.

Весьма интересны и 10 невероятных технологических прогнозов из прошлого, которые действительно сбылись. Остаётся только удивляться, насколько прозорливы были авторы этих прогнозов.

Понравилась статья? Тогда поддержи нас, жми:

Этот беспилотный дрон умеет и летать, и плавать… под водой (+видео)

Не совсем правильно думать о беспилотниках как о назойливых технологических нарушителях. Наша современная цифровая экосистема регулярно нарушает традиционные представления о конфиденциальности и бомбардирует наше ограниченное внимание внешними раздражителями. Рой дронов, парящий над головой, кажется физическим проявлением этого жужжащего, назойливого цифрового мира. Но мы пока не можем от них отказаться, потому что беспилотные дроны имеют практическую полезность и потенциал изменить многие отрасли.

Читать еще:  Какая газовая колонка лучше и надежнее по мнению специалистов и пользователей

Привлекательность дронов на потребительском рынке очевидна. Они могут снимать видео с захватывающих ракурсов, радуя огромное количество людей, одержимых самолюбованием. Помимо этого дроны нашли себе коммерческие, гражданские и правительственные применения, включая пожаротушение, сельское хозяйство, строительство, доставку и страховые выплаты. Согласно исследованию Goldman Sachs, это способствует увеличению возможностей рынка на 100 миллиардов долларов с 2016 по 2020 год.

Водоплавающий и летающий

Новый дрон, построенный командой инженеров из Университета Рутгерса, можно исследовать море и небо, расширяя список применений беспилотников еще больше.

Дрон под названием Naviator наполовину подлодка и наполовину самолет. Он может плавно погружаться в воду и исследовать подводный мир, затем подниматься и перемещаться по воздуху. Хотя подводные дроны уже существуют, именно эта переходная способность привлекла внимание.

Управление военно-морских исследований частично профинансировало проект. Военное применение кажется очевидным: воздушный и подводный беспилотник сможет быстро оценить угрозы в воде или на местности и избежать обнаружения. На промышленном уровне тот же беспилотник может обеспечить быструю оценку множества активов. И, конечно же, такой беспилотник будет очень привлекательной покупкой для потребителей. Только представьте, как будет выглядеть курортный сезон с таким дроном.

Профессор Франсиско Хавьер Диез из Лаборатории прикладных жидкостей отделения механического и аэрокосмического машиностроения рассказал, что поисково-спасательные команды проявляют большой интерес к дрону. Также интересуются из нефтегазовой отрасли. Навигатор можно развернуть с платформы или корабля, погрузить в воду и вернуть обратно.

Он также может проводить проверки мостов и выявлять уязвимости. Это крайне важно, поскольку стареющая транспортная инфраструктура может привести к несчастным случаям, если вовремя не обновлять и не модернизировать ее. Если Naviator будет отвечать стандартам, выполняя задачи по проверке, он может снизить сложность работ и повысить безопасность.

Когда аквалангисты осматривают корпуса судов, всегда остается риск несчастного случая, но Naviator может взять на себя этот риск.

Есть у дронов, однако, один недостаток. Диез говорит, что текущая модель будет лучше работать в чистых водах Флориды, но хуже в мутных водах северо-востока. Для улучшения его зрения можно использовать акустическую визуализацию, но это сделает дрон тяжелее.

Из моря на воздух и обратно

Диез говорит, что Naviator начинался как студенческий проект, который работал не очень хорошо. Затем концепция претерпела технические усовершенствования.

Изначально они пытались поместить надувной круг вокруг аппарата, который смог бы выводить беспилотник из воды, но этот метод работал только в спокойных водах. Он мог работать в небольших бассейнах, но не смог бы выдержать практические полевые испытания.

Трудная часть заключалась в том, чтобы выяснить, как переходить из одной среды в другую. Метод плота мог вывести транспортное средство на поверхность, но нужно было предотвратить контакт винтов с водой. Если они касаются воды, вы теряете контроль и начинаете все сначала.

Когда система плавучести оказалась ненадежной, команда переосмыслила систему винтовой тяги.

«Вместо четырех винтов сверху теперь у нас четыре сверху и четыре снизу. Это делает дрон устойчивым и способным переходить из подводной среды в воздух», говорит Диез.

Несколько винтов выталкивают устройство из воды. Затем нижняя четверка перестает работать, что позволяет верхней четверке работать над ватерлинией и набирать вертикальную тягу.

«Один из двух наборов винтов всегда будет помогать с переходом», говорит Диез.

Теперь его команда хочет увеличить емкость батареи и грузоподъемность дрона. Однако из этого следует, что сам дрон должен стать больше. По мере развития они будут добавлять больше датчиков, повышая надежность дрона, простоту эксплуатации, систему связи и скорость.

Ссылка на основную публикацию
Adblock
detector